

Mission 14:
Remix

Student Workbook

[image:]
[image:]

That is simply string-y![image:]

This assignment will let you be creative and come up with your own program for the
CodeX to run.
[image:]

Go to the Mission 14 Remix Log and fill out the Pre-Remix preparation.

[image:]
[image:]

Time for a project remix

A remix can be:
· A new program created by adding new code to a program you already created
· You can combine parts of two or more programs in a remix
· Use a similar idea in a different way
Creating a remix will let you:
· Master the skills and concepts practiced in the mission
· Be creative
· Remember code from earlier programs and missions
· Work with your peers
· Design an original program and write the code all on your own

Step #1: Review the mission

· Review your programs from Mission 14
· What do the programs do?
· What skills were used or concepts learned?[image:]
DO THIS:
· Open your projects from Mission 14-
	PixelPlay and LineArt
· Review what the programs do
· Review the programming concepts and
	skills you learned
· Fill out the information in the remix log
[image:][image:]

Step #2: Brainstorm ideas

· Read through remix suggestions.
· Six ideas are on the next pages. You can use any of these ideas or come up with your own.
· You can combine any parts of the suggestions into your own mild, medium, or spicy remix.
· Use your creativity to come up with your own idea for a project.
· Decide with your partner what project you will do.
[image:]
Mild Remix #1A
[image:]
Use functions that create different webs using the “draw_web()” function. Then press buttons to display different webs.
Mild Remix #1B
[image:][image:]
Use the CodeX graph paper to design an original small picture using circles, rectangles and lines. Use the “CodeX and Drawing Images” slides for additional help.
Medium Remix #2A

Create your own ASCII art (Bitmap image). Use the “CodeX and ASCII Art” slides or “CodeX and ASCII Art” PDF for help. Use buttons to display a Bitmap Image or a web design.	
[image:][image:]Medium Remix #2B
[image:][image:][image:]
Design your own image using circles, lines and rectangles (see Mild 1B). Then add x and y variables so the image can be displayed in a random position on the screen. Use the “Random Original Graphic” slides for help.		

Spicy Remix #3A

Create a set of predefined envelopes like a wave, a bulge, or a twist that a user can choose from. Use button presses to display each envelope.[image:][image:][image:]

Spicy Remix #3B

Use your original graphic (see Mild 1B and Medium 2B) and for loops to draw rows, columns and a grid of the original graphic. See the “Loops with Original Graphic” slides for help.
[image:]
Step #2: Brainstorm ideas
DO THIS:
· Decide with your partner what project
you 	will do
· Fill out the information in the Mission 14
Remix Log for Step #2

Step #3: Make a plan
Now that you have an idea for your remix, you need a plan.
· What variables or constants will you need? What values will they hold, or what will you use them for?
· What for loops, graphics and/or sounds will you use?
· What functions will you create and use?
· What buttons will you program, and what will each button do?

DO THIS:[image:]
· Fill out the information in the Mission 14 Remix Log for Step #3

Step #4: Code your project
· IMPORTANT: In CodeSpace, go to the sandbox: [image:]
· You can leave any program open, including PixelPlan and LineArt, and use them as a guide
[image:]
DO THIS:
· Start with a new file and give it a descriptive
	name (Remix14)
· Import your modules
· Create variables and constants as you go or when you see a need
· Use functions to organize your program
· Write your code, testing frequently

Reminders!
· Don’t try to write all the code at one time
· Think about the steps –
· Just get one thing to work, and then move on
· Step by step!
· Mistakes happen, so find them early
· Type just a few lines of code and then run the program
· If there is an error, fix it before continuing
· Use the debugger and your other programs for help

Step #5: Documentation
You should always make your code readable and easy to follow.[image:]
DO THIS:
· Add blank lines where needed to divide sections of code
· Add a comment at the top with your name and the name of the program
· Add a few more comments to sections of your code that explain what they do

Step #5: Get feedback
Getting feedback and reflecting on your code can help you make the program even better.[image:]
DO THIS:
· Show your code to another student
· Have him/her fill out the feedback form on your
Mission 14 Remix Log
· Get feedback from someone else (or yourself)
· Have him/her fill out the feedback form on your
Mission 14 Remix Log
Modify your code to make your project even better
Congratulations![image:]
Now you have your own remix!
Great job! Share your project with
your friends.
By completing this remix you have:
· learned more about programming
· used skills and concepts from the missions
· been thinking!
· and problem solving
· and much more!
·
· [image:]
DO THIS:
· Run projects from other students
· Complete the Mission 14 Remix Log
· Don’t forget to clear your CodeX by
running your Clear program

Page 1[image:]
image4.png

image5.png
uél

image6.png
Horizontal and vertical lines
display.draw_line(0, y_center, display.width, y_cen
display.draw_line(x_center, @, x_center, display.he
Blue border

display.draw_rect(0, @, display.width, display.heig

def draw_web(x1, yl, x2, y2, count, color):
Calculate the step size "deltas" for x and y
dx1 = int((x2 - x1) / count)
dyl = int((y2 - y1) / count)
dx2 = dylw
dy2 = -dx1
Draw the line and move endpoints by dx, dy
' for i in range(count):
display.draw_line(x1, y1, x2, y2, color)
x1 = x1 + dx1
y1 = yl1 + dyl
X2 = x2 + dx2
y2 = y2 + dy2

String art!
WEB_SPACING = 20

outside webs

draw_web(@, 0, 0, display.height, WEB_SPACING, MAGE
draw_web(@, display.height, display.width, display.
draw_web(display.width, display.height, display.wid
Araw wahlfdicnlawy widvh 0 0 0 WER CDACTNCG (CRECN

image7.png
from codex import *

Grid spacing (pixels)
GRID = 10

Variables for screen center
x_center = int(display.width / 2)
y_center = int(display.height / 2)

for x in range(display.width):
display.set_pixel(x, y_center, RED)

for y in range(display.height):
display.set_pixel(x_center, y, RED)

Draw a grid of white pixels
for y in range(0, display.height, GRID):
for x in range(0, display.width, GRID):
display.set_pixel(x, y, WHITE)

image8.png

image9.png

image10.jpg

image1.png
(=) FIRIAtass

image2.png

image3.png

